A Galerkin-Parameterization Method for the Optimal Control of Smart Microbeams
نویسندگان
چکیده
A proposed computational method is applied to damp out the excess vibrations in smart microbeams, where the control action is implemented using piezoceramic actuators. From a mathematical point of view, we wish to determine the optimal boundary actuators that minimize a given energy-based performance measure. The minimization of the performance measure over the actuators is subjected to the full motion of the structural vibrations of the micro-beams. A direct state-control parametrization approach is proposed where the shifted Legendre polynomials are employed to solve the optimization problem. Legendre operational matrix and the properties of Kronecker product are utilized to find the approximated optimal trajectory and optimal control law of the lumped parameter systems with respect to the quadratic cost function by solving linear algebraic equations. Numerical examples are provided to demonstrate the applicability and efficiency of the proposed approach.
منابع مشابه
A Computational Method for Solving Optimal Control Problems and Their Applications
In order to obtain a solution to an optimal control problem, a numerical technique based on state-control parameterization method is presented. This method can be facilitated by the computation of performance index and state equation via approximating the control and state variable as a function of time. Several numerical examples are presented to confirm the analytical findings and illus...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملNumerical solution of optimal control problems by using a new second kind Chebyshev wavelet
The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...
متن کاملNonlinear Optimal Control Techniques Applied to a Launch Vehicle Autopilot
This paper presents an application of the nonlinear optimal control techniques to the design of launch vehicle autopilots. The optimal control is given by the solution to the Hamilton-Jacobi-Bellman (HJB) equation, which in this case cannot be solved explicity. A method based upon Successive Galerkin Approximation (SGA), is used to obtain an approximate optimal solution. Simulation results invo...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کامل